
Chapter 1
Realization of Regular Maps of Large Genus
Faniry Razafindrazaka and Konrad Polthier

Abstract Regular map is an algebraic concept to describe most symmetric tilings
of closed surfaces of arbitrary genus. All regular maps resp. symmetric tilings of
surfaces up to genus 302 are algebraically known in the form of symmetry groups
acting on their universal covering spaces. But still little is known about geomet-
ric realizations, i.e. finding most symmetric embeddings of closed surfaces and a
supported most symmetric tiling. In this report, we will construct some new highly
symmetric embeddings of regular maps of up to genus 61 and thereby shed some
new light on this fundamental problem at the interface of algebra, differential ge-
ometry, and topology.

1.1 Introduction

Tiling of closed surfaces into non-overlapping faces is one of the central topics in
surface topology and computer graphics. Either the surface is given and a nice tiling
of this surface has to be found or the tiling is given and the surface on which the
tiling is the most symmetric has to be found. This paper explores the later case but
restricts the tiling scheme to the class of regular maps.

The concept of map was first introduced by Coxeter and Moser [2]. A map is
a family of polygonal faces such that any two faces share an edge or vertex, or
are disconnected. Each edge of the maps belongs precisely to two faces, the faces
containing a given vertex form a single cycle of adjacent faces and between any
two faces is a chain of adjacent faces. In other words, it is a closed 2-manifold
without boundaries obtained by glueing topologically equivalent polygonal faces. If
the maps has p-gonal faces and q-gonal vertex-figures (number of faces around at a
vertex), then it is has the Schläfi symbol {p,q}.

A regular map is a map which is flag transitive. This means that, on the surface, if
a vertex or an edge or a face is mapped to another vertex or an edge or a face, then the
map is one to one and preserves all adjacency properties between the vertices, edges
and faces. Regular maps can be viewed as generalization of the Platonic solids into
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2 1 Regular Maps of Large Genus

(a) Spherical regular maps (b) Genus 1 regular maps

Fig. 1.1 Example of genus 0 and genus 1 regular maps, where the first set corresponds to the
Platonic solids and the second set to tilings of the torus.

higher genus surfaces. They define regular tilings of closed surfaces and their group
structure can be used to move along the surface which behaves like an “hyperbolic”
parameterization.

Figure 1.1 illustrates some examples of low genus regular maps which include
the Platonic solids, the Hosohedron and some tilings of the torus.

In this report, we give realizations of regular maps of genus > 20 that we classify
to be large genus regular maps. In Figure 1.2 is an example of a genus 61 regu-
lar map which is the highest genus regular map ever visualized so far. Our main
contribution is the targetless tubification described in Section 1.4.2. All the images
generated in this paper are produced by our algorithm.

The chapter is organized as follows. First, we will give theoretical backgrounds
on regular maps including geometric and algebraic characterization. Second, we
will describe the basic procedure to obtain, with maximal symmetry, large genus
surfaces. And finally, we will give a description of the method used to produce
tilings on these large genus surfaces.

1.2 Related Works

Up to now, there is no general method to visualize regular maps but a lot is already
known about their symmetry group, see for example Conder [1]. The problem is
two-fold, understanding the symmetry group of the regular map and finding a suit-
able space model for it. Jack van Wijk [5], in his Siggraph paper, suggested a generic
approach which gives interesting visualization of some of the lower genus regular
maps up to genus 29. He succeed to handle about 50 cases by using a brute force
computer search. However, his method is too restrictive and cannot realize even
some of the simplest cases. Séquin’s investigations ([10], [11], [12]) are also a huge
source of inspiration. He uses physical modeling techniques, including sketches,
paper models and Styrofoams to finally obtain a computer generated model. Some
cases have been solved by his method from genus 2 to genus 5 but each regular
map is handled separately. Sequin’s approach are useful for a better understanding
of the structure of regular maps but too primitive to handle the large ones. In our
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Fig. 1.2 Visualization of a genus 61 surface tiled with 480 hexagons following the regularity of
the map R61.1′{6,4}.

early work [7, 8], We uses the same approach as van Wijk but we added a relaxation
procedure to obtain more symmetrical and smooth tubular geometry. We use this
relaxation scheme as a second step of the targetless tubification algorithm.

In this paper, we aim at surfaces having more than two junctions and with rich
structures to accommodate regular maps. We are not interested in the hosohedral
kind of surface. These are the surfaces obtained by taking the tubular neighborhood
of Hosohedra.

1.3 Background Notions

1.3.1 On Standard Geometry

Isometric realization of tilings depends on the ambient space where they are embed-
ded. These are: the Sphere, the Euclidean plane and the Hyperbolic plane. For spher-
ical and hyperbolic geometry, we use [9]. Examples of spherical isometric tilings are
the Platonic solids. The Euclidean plane can be isometrically tiled by checker-board
patterns and Honey-comb like structure. The Hyperbolic plane are tiled by p-gons
for large p’s. A closed 3D realization of a sub-tiling of the Euclidean plane is a
Torus (see Figure 1.1). The closeness of the torus is topologically derived from a
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parallelogram in the Euclidean plane wrapped in 3D by identifying opposite sides.
In this 3D realization, isometry is lost but the topology of the tiling is still preserved.
We then only talk about combinatorial or topological transitivity.

Similar 3D realizations can also be done from the Hyperbolic plane. A genus
g > 1 surface is derived by taking a 4g-gon in the Hyperbolic plane and identify-
ing pairwise edges. Hence, any tiling of the Hyperbolic plane can be realized as
3D surfaces by finding a proper 4g-gon partitioning of this tiling with the correct
identification at the boundary. Special case of these tilings are regular maps.

If a map has V vertices, E edges and F faces, then its genus g is given by

g = (2−χ)/2, (1.1)

where χ =V −E +F is the Euler-Poincaré characteristic. It is a property of the
surface, independent of the map; the dual map has also the same Euler-Poincaré
characteristic χ . Intuitively, the genus of a surface is the number of tunnel in this
surface. Depending on their genus, regular maps can be abstractly realized as quo-
tients of spherical tilings, euclidean tilings or hyperbolic tilings.

1.3.2 On Regular Map

A finitely generated group is a group of the form 〈G |R〉, where G is a set of gener-
ators and R is a set of relations. If Ri ∈R, then Ri = I which is the identity of the
group.

A regular map is a finitely generated group of the following form

Sym(MS) =
〈
R,S,T |Rp,Sq,T 2,(RS)2,(ST )2,(RT )2,R1, . . . ,Rm

〉
, (1.2)

where R is a rotation of 2π/q; S is a rotation of 2π/p and T is a reflection. They are
transformations acting on a fundamental triangle with corner angles π/p,π/q and
π/2 (see Figure 1.3). Depending on p and q, they can be euclidean motions, special
orthogonal matrices (for spherical) or Moëbius transformations (for hyperbolic).
R1, . . . ,Rm are extra relations making the group finite. The expression 1.2 is called
the symmetry group of the map. It is the set of all automorphisms of the regular
map [2].

The symmetry group of the cube (a regular map of type {4,3}) is defined by

Sym(Cube) =
〈
R,S,T |R4,S3,T 2,(RS)2,(ST )2,(RT )2〉 , (1.3)

Sym(Cube) can be realized on a blown up Cube, taking as fundamental triangle a
spherical triangle with corner angles π/4,π/3 and π/2 (figure 1.3-a). It can also be
visualized as a 2D surface using stereographic projection which is only conformal
(Figure 1.3.b) but not isometric.

Orientable regular maps are denoted in Conder [1] by Rg.i{p,q}, which is the
ith−reflexible orientable map of genus g. {p,q} is the Schläfi symbol of the tiling.
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Fig. 1.3 Two different representations of the Cube using: (a) a Sphere and (b) stereographic pro-
jection into the plane.

Reflexible means that the transformation T in Equation 1.2 is also an automorphism
of the map. Analogously, the dual map is represented by Rg.i′{q, p}. Conder [1]
listed all reflixible regular maps of genus 2 to 302. They are given as symmetry
groups and used as input to our algorithm.

1.4 Generating Large Genus Surfaces

In this section, we explore in depth techniques to generate and visualize large genus
surfaces. Our aim is not only to generate some genus g surface but also a surface
with rich topological structure and nice looking shape.

1.4.1 Tubification Process

A genus g surface can be generated by taking a sphere and drill non intersecting g
tunnels on it. Another approach, very used for teaching, is the sphere with g handles.
It consists mainly of taking Tori and glueing them on a Sphere to form handles. It
is then unclear where the Tori should be placed and if the resulting surface can be
used to visualize symmetric tilings.

A better approach is the use of a tubification process. It consists of taking a tiling
of a surface, turning its edges into tubes, its vertices into junctions and its faces into
tunnels. For example, a genus 2 surface can be derived from a tubified Hosohedron
{2,3} as illustrated in Figure 1.4.b. Surfaces with rich structure or regular surfaces
can be derived by taking regular tilings having more than two vertices. The Platonic
solids are direct examples of these. Even more, we can take any regular maps and
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(a) (b) (c) (d) (e)

Fig. 1.4 Recurssive tubification starting from: (a) hosohedron {2,3}, (b) tubification of its
edge graph, (c) regular map R2.8′{8,3}, (d) tubification of its edge graph and (e) regular map
R9.3′{6,4}.

apply the tubification process to derive large genus surfaces. In Figure 1.4.c-d, we
show an example of a tubification of the regular map R2.8’{8,3}.

As in [5], a pairing of source and target map is used to generate higher genus
surfaces. The source map is the actual regular map that we want to realize and the
target map is the regular map which after tubification gives a space model for the
source map. More precisely, let (Mi)i∈I be a finite sequence of regular maps such
that a space model of Mi+1 is the tubification of Mi. For a given n, if for all i < n,
the Mi’s are realized, then a tubification of Mn−1 is a space model of Mn. Otherwise,
we cannot give a space model for Mn. This become now a classical method used to
visualize successfully large class of regular maps. In the next section, we show that,
in fact, the sequence of Mi’s is not needed, only the pairing of source-target map is
enough.

1.4.2 Targetless tubification

The tubification of an existing regular map has a critical issue since it needs an
actual realization of the target regular map. Hence, if the target regular map does
not have a 3D embedding, then the tubification cannot be applied and thus no higher
genus surface is generated.

We give a solution to this restriction by taking advantage of the planar repre-
sentation of the target regular map. We call the process a targetless tubification.
Targetless in the sense that no actual 3D embedding of the target regular map is
needed but only an embedding of its edge graph is sufficient.

We generalize the torus case to Hyperbolic space. More precisely, suppose we
have a tiling of a flat torus with its 2D edge graph. This edge graph can be mapped
to 3D using the usual parameterization function and hence a tubular surface is de-
rived naturally. In this process, only the edge graph is needed to be embedded in
space, not the 2D tiling. We do also the same process in Hyperbolic space but since
we do not have an explicit parameterization, we do as follows: first, we identify
explicitly boundary edges of the map and second, we apply the constrained relax-
ation procedure described in [7] to get symmetry and smoothness. All the higher
genus surfaces in this paper were produced by this simple procedure. An example
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of a genus 5 surface obtained by the edge graph of the regular map R2.4{5,10} is
illustrated in Figure 1.5. In this illustration, we start with the hyperbolic realization
of R2.4 with the identification at the boundary (represented by the arrows). We then
match the boundary edges having the same label, head to head and tail to tail. This
results in a 2D connected graph which has the same combinatorics has the edge
graph of the underlying regular map. This 2D graph is then smoothed using spring
energy.

parametrization
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12 Identification Smoothing
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Mapping only the edge graph by the parameterization

Mapping the edge graph by identifying explicitely the edge greaph

Fig. 1.5 Construction of a high genus surface by embedding directly the edge graph of the target
regular map.

Notice that no actual embedding of the regular map R2.4 is needed (see [12] for
a 3D realization of this map). Our technique can be applied to any planar repre-
sentation of a regular map to generate a 3D tubular surface obtained from its edge
graph. Below are some examples of large genus regular map generated by the above
method.

1.5 Topological Group Structure

In this section, we define a topological group structure on the surface generated
previously that we denote Sg.
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1.5.1 Partition by Tube Elements

The recursive tubfication procedure derived in section 1.4.1 allows us to choose a
tiling of Sg. We have for example a tiling with quarter-tubes, with half-tubes, with
tube junctions, with full tubes or with multiple quarter-tubes (see Figure 1.6). We
call one of these a fundamental domain of Sg, and as for every group, we can cover
the surface by copies of this fundamental patch. These tilings are induced naturally
from the underlying regular map used to derive the tubular surface.

(a) quarter-tubes (b) half-tubes (c) tube junctions (c) full tubes

Fig. 1.6 Example of a partition of Sg with some elements of the tubes.

The next step is now to define a group structure induced by the tube element in
order to define a parameterization of Sg. This parameterization will be then used to
map other regular maps as described in Section 1.6.

1.5.2 Deriving the Symmetry Group

We restrict our construction to the case of a tiling with quarter-tubes as in [5]. The
other cases can be handled analogously.

Let Q be the set containing all colored quarter-tubes of Sg. We label the edge
of a quarter-tube by a,b,c and d, where a is the one at the junction and b,c,d are
the next counter-clockwise edges. The orientation is defined by the normal of the
surface at each quarter-tube.

We define a basic operation Adjx on Q which takes a quarter-tube Q and returns
the quarter-tube adjacent to Q at edge x:

Adjx : Q→Q

Q 7→ quartertube adjacent to Q at edge x

For example, (Adjb)
2 is the identity since making two quarter-tube steps around

a tube get back to the start. (Adja)
2 is also the identity. Let QI be a fundamental

domain of Q (it can be any quarter-tube of Q). We define three operations A,B and
C on Q as follows:
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Fig. 1.7 The adjacency operator defined on the set of quarter-tubes.

Fig. 1.8 Three adjacency op-
erators acting on the quarter-
tube tiling: A shifts QI two
positions positively around
a hole; B rotates QI around
the junction; C shifts QI one
position down.

I

A

B
C

• A shifts QI two positions positively around a hole,
more precisely QA = Adja (Adjc(QI));

• B rotates QI around the junction, QB = Adjd (Adja(QI));
• C shifts QI one position down, QC = Adjb(QI).

Here, QM denotes the quarter-tube obtained by applying a transformation M to
QI .

We can see A as a transformation moving a tube around a hole, B switches from
one hole to another hole and C enables to reconstruct a full tube from a quarter of a
tube. Using Adjx , we can derive the following relation

(CBA)2 = (BA)2 = (CB)2 = I

where, I denotes the identity transformation. Using the underlying symmetry
group of the tiling used to build Sg we can define a symmetry group of Sg as

Sym(Sg) =
〈
A,B,C |Apt ,Bqt ,C2,(CB)2,(BA)2,(CBA)2,

g1(A,B,CB), . . . ,gn(A,B,CB)〉 ,

where, the gi’s are the extra relations of the symmetry group of the underlying reg-
ular map.

A group structure on the genus 5 surface shown in Figure 1.8 is given by

Sym(M5) =
〈
A,B,C |A4,B3,C2,(BA)2,(CB)2,(CBA)2〉 .
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This group has exactly 12× 4 quarter-tubes highlighted in Figure 1.8. Once the
group structure is introduced on Sg, we can unfold this surface in hyperbolic space
to embed a regular map on it.

1.6 Tilings

1.6.1 Matching Symmetry Groups

In this section, we give a brief description of the use of the symmetry group intro-
duced on Sg to realize a regular map. The regular map is defined with its symmetry
group Sym(Smap) realized as planar tiling in Hyperbolic space.

The first step is to make an hyperbolic parameterization of Sg. This process is
similar to the torus case (space model for genus 1 regular map) where the parameter-
ization is done onto the unit square. For high genus surfaces, the parameterization is
done by choosing a suitable fundamental quadrilateral hQI in hyperbolic space and
set it as fundamental domain of Sym(Sg). The idea here is to make a 2D realization
of Sym(Sg) using another fundamental domain. Once the parameterization is done,
the regular map can be naturally mapped using the inverse mapping. An overview of
the algorithm is illustrated in Figure 1.9. The remaining problem is then on the con-
struction of hQi and the hyperbolic transformations corresponding to the elements
of Sym(Sg).

The construction of hQI depends on the matching between Sym(Sg) and
Sym(Smap). These matchings are heuristics which check if there exists a partition of
Sym(Smap) by Sym(Sg). A necessary condition is that the order of Sym(Sg) should
dives the order of Sym(Smap) and a sufficient condition is the existence of a subgroup
of Sym(Smap). In the successful case, hQI can be constructed, otherwise Sg is not a
suitable space model for Sym(Smap) and the mapping cannot be done. Matchings
between regular maps are generated using van Wijk [5] heuristics. It consists of a
pairing of source map and target map where the second is a lower genus regular map
which after tubification gives a space model the first. His heuristic also provides the
exact position of the four points of hQI in hyperbolic space.

In his lists, there are several mappings which cannot be visualized since the target
map does not have a 3D realization. This is mainly the case for the large genus
regular maps which depend on several low genus ones. These cases are handled by
the targetless tubification in Section 1.4.1.

1.7 Geometric Construction

In this section, we assume that the target map has a 3D realization and describe the
geometrical tools used to construct the tubes. As stated in Section 1.4, the tubes
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Fig. 1.9 Pipeline to visualize a regular map on a structured genus g surface.

are derived from the edges of an existing regular map. These edges define a control
skeleton S of the tubular surface and is used to deform the shape of the tube.

The normals along S are induced from the surface. Using these normals, we
construct the tube from four quarter tubes, highlighted in Figure 1.10. Each quarter
tube consists of half ellipses connected to each other which starts at the center of an
edge and rotates from 0 to φ/2 when approaching a junction, where φ is the angle
with the adjacent edge at the junction. This is illustrated in Figure 1.10.

Fig. 1.10 Generating tubes
from quarter tubes. The red
arrow represent the normals
along the edge of the tiling,
induced from the surface
(left). At the junction, each
quarter tube meets with the
correct angle and then iden-
tified to form a connected
surface (right).

We did not write the mathematical construction of the tubes here, this is exten-
sively studied in [7]. For the targetless tubification, the normals are obtained from
the local orientation at the node junctions. These local orientations are derived from



12 1 Regular Maps of Large Genus

the group structure of the underlying regular map which tells us that it must be an
orientable surface and hence the normals along its edge-graph must be continuous
(take a normal and parallel transport it along any cycle of the graph, then it should
give the same normal when it comes back). Normals along an edge are generated by
interpolating the two normals at the two endpoints of its junction.

For a better smoothness at the junctions, we do a Catmull-Clark smoothing [6].
New points are not inserted but are only used as mask to relax the points. This is
similar to a laplacian smoothing for quad meshes.

1.8 Examples of High Genus Regular Map

In Figure 1.11, few examples of large genus regular maps generated by our target-
less tubification are illustrated. The arrows are the matchings between source and
target map. These are found using the heuristics presented in [5]. We choose espe-
cially large genus regular maps which are closed to spherical and euclidean tilings.
Namely, maps for which the integer distance between p and q is not so big.

We succeed to generate all the regular maps missing in [5] which are more than
two-fold increases of the current results. In this paper, we emphasis on the visual-
ization of large genus regular maps with self-intersection free even for very high
genus surfaces.

The choice of the tube radius is crucial in this process but it is closely related to
the spring energy parameter (attraction and repulsion). Hence, we leave it interactive
and modified by visual inspection. In all of our experiment, only few adjustment is
needed to have a non self-intersecting surface.

1.9 Conclusion

We presented a method to generate large genus regular maps. Regular maps are
generalization of the Platonic solids into higher genus surface. These are realized
by using a new targetless tubification procedure which does not require any actual
embedding of a target shape to generate a genus g surface.

Regular map is an intriguing surface and having a nice visualization of them
remains an interesting and unsolved problem. So far, we did not find any practical
application of those shapes if not for symmetric tiling of closed surface. They can
also be good models used for teaching and understanding how symmetry group
work.

Similar to the Platonic solids, regular maps are the most symmetric tiling we can
use for high genus surfaces but we need to find the correct space model where these
symmetries can be appreciated.

What is not described in this paper is an automatic algorithm which gives the
identified edges in the planar representation of the target maps. We will leave this
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detail as future work.
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R17.11′{12,4}→ R6.8′{8,6} R21.3′{4,6}→ R5.2′{10,3}

R25.7′{10,4}→ R5.9{5,5} R25.8′{12,4}→ R10.16′{12,6}

R28.6′{6,4}→ R10.10′{12,4} R31.3′{6,4}→ R10.3′{15,3}

Fig. 1.11 Some large genus regular maps generated by the targetless method.
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