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$EVWUDFW
Enterprise applications can be viewed as topologies of distributed processes that access
business data objects stored in one or more transactional datastores. There are several well-
known topology patterns that help to integrate different subsystems or to improve
nonfunctional properties like scalability, fault tolerance, or response time. Combinations of
multiple patterns lead to custom topologies with the shape of a directed acyclic graph
(DAG). These topologies are hard to build on top of existing middleware and even harder
to adapt to changing requirements. In this paper we present the principles of an enterprise
application architecture that supports a wide range of custom topologies. The architecture
decouples application code, process topology, and data distribution scheme and thus allows
for an easy adaptation of existing topologies. We introduce RI-trees for specifying a data
distribution scheme and present rules for RI-tree-based object routing in DAG topologies.

��� ,QWURGXFWLRQ
Enterprise applications are transactional, distributed multi-user applications that are
employed by organizations to control, support, and execute business processes.
Traditionally, data-intensive enterprise applications have been built on top of centralized
transaction processing monitors. Nowadays, these TP monitors are replaced by object-
oriented multi-tier architectures where entities of the business domain are typically
represented as EXVLQHVV�REMHFWV. To differentiate between process-centric and data-centric
business objects we use the terms EXVLQHVV� SURFHVV� REMHFW and EXVLQHVV� GDWD� REMHFW,
respectively. In this paper we take a data-centric view and thus focus on business data
objects, which constitute the application’s object-oriented data model. A business data
object represents an entity of persistent data that is to be accessed transactionally by
processes of the enterprise application, e.g., a Customer or Account object. In typical
enterprise applications business data objects (or short: GDWD� REMHFWV) reside in and are
managed by the second last tier while their persistent state is stored in the last tier. The last
tier consists of one or more transactional datastores, for example, relational database
management systems.

Current platforms for object-oriented enterprise applications (like CORBA [5] or Sun’s
J2EE [9]) provide excellent support for two-tier architectures and three-tier architectures
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with ultra-thin clients, e.g., web browsers. However, many large-scale applications need
more advanced structures that differ from these simple architectures, for example, to meet
specific scalability or fault tolerance requirements.

In Section 2 we introduce SURFHVV� WRSRORJLHV� which provide an appropriate view on the
distributed structure of an enterprise application. In addition, we present several well-
known patterns that are used in many topologies and motivate the need for flexible DAG
topologies. Section 3 discusses types of connections for building process topologies and
difficulties developers typically face when custom topologies are required. An enterprise
application architecture for flexible topologies that decouples application code, process
topology, and data distribution scheme is outlined in Section 4. Two key aspects of the
architecture are discussed in the following two sections: In Section 5 we present RI-trees
for specifying a data distribution scheme. Section 6 proposes rules for RI-tree-based object
routing in DAG topologies. We discuss related work in Section 7 and finally give a brief
summary in Section 8.

��� 3URFHVV�7RSRORJLHV
Enterprise applications can be viewed as topologies of distributed processes. Formally, a
process topology is a directed acyclic graph (DAG). Nodes of the DAG represent
distributed, heavyweight, operating system level processes (address spaces) which are
either transactional datastores (leaf nodes) or application processes (inner nodes). Two
processes may but are not required to be located on the same machine. Each edge in the
DAG represents a (potential) client/server communication relationship. The concrete
communication mechanism, e.g., RPC-style or message-oriented, is not important at this
level of abstraction. Figure 1 shows an example of such a process topology.

Nodes that are not connected with an edge can never communicate directly. In enterprise
applications there are many reasons for restricting communication and not allowing
processes to directly communicate with arbitrary other processes, for instance:

• 6HFXULW\ – A sub-system (nodes of a sub-graph) is shielded by a firewall which
allows access to processes of the subsystem only via one or more dedicated
processes.

Figure 1. Example of a topology of distributed processes.



• 6FDODELOLW\ – Highly scalable systems often require a sophisticated topology to
employ services for caching, load balancing, replication, or concentration of
connections. For example, allowing client processes to directly connect to datastores
reduces communication overhead, but then the overall system cannot scale better
than two-tier architectures, which are well-known for their restricted scalability.

• 'HFRXSOLQJ – The concrete structure and complexity of a sub-system is to be hidden
by one or more processes that act as a facade to the subsystem. For instance, in a
three-tier structure tier two can shield the client tier from the complexities of tier
three.

����� 3URFHVV�7RSRORJ\�3DWWHUQV

There are a number of patterns that can be found in many enterprise applications and that
are directly related to process topology. These WRSRORJ\� SDWWHUQV can be viewed as high-
level design patterns [2], [4], where distributed processes represent coarse-grained objects.
In Figure 2 six topology patterns are depicted:

1. 3URFHVV�UHSOLFDWLRQ – An application process is replicated and the load produced by its
clients is horizontally distributed among the replicated processes.

2. 'LVWULEXWHG�GDWD – Instead of using a single datastore, data objects are distributed (and
possibly replicated) among multiple datastores. This pattern facilitates load distribution
and basic fault tolerance.

3. 3UR[\�SURFHVV – A proxy process is placed between the proxified process and its clients.
Tasks are shifted from the proxified process to the proxy to achieve vertical load
distribution. For instance, the proxy can cache data and process a subset of client
requests without having to contact the proxified process. In addition, this pattern allows
to add functionality to the services provided by the proxified process without having to
modify the proxified process.

4. *URXS�RI�SUR[\�SURFHVVHV – This is a common combination of Pattern 1 and Pattern 3.
By introducing a new tier of proxy processes, load is first shifted vertically and then
distributed horizontally among the replicated proxy processes. This pattern is typically
employed for a concentration of connections when handling too many client
connections would overload a server. The replicated proxies receive client requests,
possibly perform some pre-processing (e.g., pre-evaluation) and forward the requests to
the server using only a view “concentrated” connections.

5. ,QWHJUDWLRQ� RI� VXEV\VWHPV – Often existing data and/or applications have to be
integrated. This pattern has two variants: a) Equal integration by introducing a
federation layer/tier on top of the existing subsystems. b) Integration of subsystems into
another (dominant) system.

6. 0HVK – Redundant connections are added to create alternative paths of communication
relationships between processes. Usually, this pattern is employed in conjunction with
Pattern 1 and facilitates fault tolerance and horizontal load distribution.



����� &RQVWUXFWLRQ�RI�&XVWRP�3URFHVV�7RSRORJLHV

The patterns presented above are used to GHVFULEH parts of a given process topology at a
high level of abstraction. In addition, a pattern can be DSSOLHG to a process topology and
hence define a transformation step. Ideally, a concrete process topology is constructed by
starting with a standard topology (e.g., simple three-tier) and successively applying
combinations of patterns to parts of the topology as required by the enterprise application.

What an adequate process topology looks like is highly application-specific and depends on
many factors, including organizational and legal requirements, existing hardware and
operating systems, underlying network structure, existing systems to be integrated, number
and location of clients, typical usage patterns, and performance/scalability/fault tolerance
requirements.

Many of these factors tend to change over time. For example, a successful enterprise
application might have to handle a rapidly growing number of clients, or new functionality
is introduced that requires a higher level of fault tolerance. To adapt a custom process
topology to changing requirements, developers have to transform it by applying, removing,

Figure 2. Typical topology patterns for large-scale enterprise applications.
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and modifying topology patterns. Thus, it is desirable to have a IOH[LEOH�SURFHVV� WRSRORJ\
that can easily be adapted, for example by changing configuration data. With application
code designed for a specific topology, this is extremely difficult. Therefore, a flexible
process topology requires that application and underlying process topology are decoupled
as much as possible.

��� &RQQHFWLRQ�7\SHV�LQ�3URFHVV�7RSRORJLHV
Communication relationships in a process topology are implemented by connections. In this
section we examine connections offered by current middleware and discuss problems that
occur when custom topologies are built on top of them.

In general, connections can be categorized along various dimensions, for example, the
degree of coupling, available bandwidth, or underlying communication protocols. For our
problem analysis it is useful to define categories with regard to how business data objects
are remotely accessed and represented. Based on that dimension, most connections used in
current enterprise applications can be categorized into four types:

����� 7\SH�'�±�'DWDVWRUH�&RQQHFWLRQV

A Type D connection connects an application process (client, inner node) with a datastore
(server, leaf node). The client accesses data objects persistently stored in the datastore.
Often generic access is supported via a query interface. Type D connections are typically
provided by datastore vendors, examples are ODBC, JDBC, and SQL/J. For many non–
object-oriented datastores, there are adapters that provide (local) object-oriented access to
Type D connections, for instance, object-relational mapping frameworks.

����� 7\SH�3�±�3UHVHQWDWLRQ�RULHQWHG

A Type P connection connects two application processes. The client process is specialized
on presentation and has no direct access to business data. Instead, the server transforms data
objects into a presentation format before it sends data to the client. The transformation
effectively removes object structure and identity. The client can update pre-defined fields
of the presentation and post their values to the server, which has to associate the
presentation-oriented changes with data objects again. Examples are HTML(-forms) over
HTTP and terminal protocols.

����� 7\SH�5�±�5HPRWH�'DWD�2EMHFWV

The server process of a Type R connection represents data objects as remote objects.
Remote objects have a fixed location and clients can access their attribute values via remote
invocations. Examples are (pure) CORBA and RMI access to EJB entity beans [8], [7].

����� 7\SH�$�±�$SSOLFDWLRQ�VSHFLILF�)DFDGHV�IRU�'DWD�VKLSSLQJ

A Type A connection connects two application processes. The server exposes an
application-specific facade to the client. Clients cannot directly access data objects on the
server (and thus the original object-oriented data model), instead they talk to the facade
which implements application-specific data-shipping operations: The object states are
extracted, transformed into a format for shipping (often proprietary or XML), and then



copied to the client. The following listing shows an example interface (RMI) for such an
application-specific facade.

// for shipping values of a Customer instance
public class CustomerRecord implements java.io.Serializable {
   ...
}
...

public interface OrderSystemFacade extends Remote {
   CustomerRecord[] getCustomersByName(String pattern, int maxHits)
                  throws RemoteException, DatastoreEx;
   OrderRecord[] getOrdersByCustomer(String customerId)
                  throws RemoteException, DatastoreEx;
   OrderRecord[] getOrdersByDate(Date from, Date to, int page, int
                                 ordersPerPage)
                  throws RemoteException, DatastoreEx;
   void updateCustomer(CustomerRecord c)
                  throws RemoteException, NotFoundEx, UpdateConflictEx,
                         DatastoreEx;
   void insertCustomer(CustomerRecord c)
                  throws RemoteException, NotFoundEx, AlreadyExistsEx,
                         DatastoreEx;
   void deleteCustomer(CustomerRecord c) ...
   �����RWKHU�PHWKRGV�����
}

In addition to data-shipping operations the facade usually implements application-specific
operations for inserting, updating, and deleting data objects. Examples of Type A
connections are CORBA facades to local data objects, RMI + EJB session beans,
application-specific messages sent via messaging systems, and low-level, application-
specific communication via sockets.

There is a subtle but important difference between types R and A. Both can be implemented
on top of distributed object middleware. However, while Type R exposes data objects as
remote objects, Type A treats them as local objects and copies their state by value.

����� /LPLWDWLRQV�RI�([LVWLQJ�&RQQHFWLRQV

In general, connections of Type D and P are well-understood and have mature
implementations. In fact, three-tier architectures based on P/D combinations are the first
choice in many projects because of the simplicity of the approach. Unfortunately, Type P
connections and their thin clients (web browsers, terminals) are not an option for many
applications that need complex, sophisticated, user-friendly, and highly interactive GUIs.
Also, P/D combinations are not a solution for applications that employ topology patterns
and require custom topologies.

Type R connections are comfortable – but object-oriented, navigational client access to
remote data objects typically leads to communication that is too fine-grained. For instance,
a fat client that displays a set of data objects as a table can easily perform hundreds of



remote invocations just for displaying a single view to a single user. This results in high
network traffic, bad response time, high server load, and thus limited scalability [10].

Often, this leaves only Type A for connections that cannot be covered by D or P.
Unfortunately, efficient implementations of Type A connections tend to get very complex
since application developers have to deal with many aspects that are generally regarded as
infrastructure issues, for instance:

• Client side caching of objects,
• managing identity of objects on the client side: Objects copied by value from the

server should be mapped to the same entity if they represent the same data object,
• integration of client data and client operations into the server side transaction

management,
• mechanisms for handling large query results that avoid copying the complete result,
• synchronization of stale data.

Most application developers are not prepared to handle these infrastructure issues, which
makes Type A connections a risk for many projects. An additional drawback is that
developers have to maintain application-specific facades and keep them in sync with the
server’s object-oriented data model.

In principle, Types R and A can be combined, which results in a data model that consists of
first class remote objects and second class value objects, which depend on their first class
objects. This approach is a compromise, but it combines both the advantages and
disadvantages.

While the limitations of Type A connections make it hard to build custom topologies on top
of them, it is even harder to adapt such topologies to changing requirements. The
insufficient separation of application and infrastructure concerns usually makes it necessary
to modify and redesign large parts of an enterprise application when topology patterns have
to be applied, modified, or removed.

��� 2YHUYLHZ�RI�WKH�)37�$UFKLWHFWXUH
In this section, we outline principles of an enterprise application architecture that
specifically addresses the problems motivated above.

Our IOH[LEOH�SURFHVV�WRSRORJ\��)37��DUFKLWHFWXUH specifies a data-centric infrastructure for
object-oriented enterprise applications. The architecture has the following two main goals:

(a) Support for arbitrary DAGs of distributed processes as underlying topologies. For
each enterprise application a custom-made topology can be designed that exactly
matches application-specific requirements.

(b) Flexible topologies – topologies are easy to adapt, because application code, process
topology, and data distribution scheme are decoupled.



����� $SSURDFK

The basic idea behind the FPT architecture is to place a generic REMHFW�PDQDJHU component
in each application process of the topology as depicted in Figure 3. An object manager

• maintains and transparently manages connections to object managers of connected
client and server processes (these connections are called REMHFW� PDQDJHU
FRQQHFWLRQV, or 7\SH�2 connections),

• offers to local application code an interface for transactional, object-oriented access
to business data objects, including object queries and navigational access,

• internally represents business data objects as value objects that are copied (not
moved) across process boundaries,

• transparently loads, stores, and synchronizes business data objects from/with
connected object managers, and

• acts as a cache for business data objects that services local application code and
client object managers.

����� 'HFRXSOLQJ

Application code is decoupled from process topology and data distribution scheme because
it accesses data objects exclusively through the local object manager that transparently
loads objects by value via Type O connections. Type O connections are a matter of object
manager configuration and hidden from the application. Optimizations, like bulk transfer of

Figure 3. A process topology based on our FPT architecture: In each application
process resides an object manager component that manages business data objects.
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object state, object caching [3], query caching, or pre-fetching [1], are also handled by
object managers, to clearly separate application and infrastructure issues.

The DAG of processes of an enterprise application corresponds to a DAG of object
managers, which cooperate to access data objects persistently stored in datastores. A
distribution scheme for data objects in datastores, including replication, is defined by 5,�
WUHHV, which are discussed in the Section 5. Object managers are responsible for routing
data objects and queries via other object managers to the appropriate datastores. To
decouple data distribution from topology, object managers use a routing mechanism that
takes topology and distribution scheme as parameters and produces a correct routing for all
combinations.

����� )37�7UDQVDFWLRQV

Application code can set boundaries of )37� WUDQVDFWLRQV and transactionally access data
objects, i.e. perform insert, update, delete, and query operations. The local object manager
fetches all objects accessed (and not present in the local cache) from connected server
processes, which in turn can fetch them from their servers. Internally, each object has a
version number, which is incremented whenever a new version is made persistent. Cached
data objects may become stall, i.e. their version number is smaller than the version number
of the corresponding entry in the datastore. Object managers keep track of each object’s
version number and, in addition, of one or more KRPH�GDWDVWRUHV that store the (possibly
replicated) object. For replicated objects, which are accessed according to a “read-one-
write-all” (ROWA) scheme, it is possible that only a subset of home datastores is known to
an object manager, unless it explicitly queries other datastores that may store the object. For
efficient navigational access, one, a subset, or all of the home datastores can be stored as
part of object references.

When a transaction changes data objects, the local object manager transparently creates
new private versions in the local cache. Transaction termination is initiated by a FRPPLW
call and consists of two phases: (1) push-down and (2) distributed commit. In phase 1 all
private versions are propagated “down” the DAG topology via Type O connections to
application processes that can directly access the corresponding datastores. In phase 2,
when all involved datastores have been determined, a (low-level) distributed database
transaction is initiated, all propagated object versions are stored to their home datastores,
and a distributed commit protocol is executed, for example two-phase commit.

To exploit caching and to relieve datastores and connections of fine-grained lock requests,
an optimistic concurrency control scheme is used: In phase 2, before new versions are
stored, the version number of each new version is checked against the version number
stored with the corresponding datastore entry to detect conflicts with other transactions.

Due to space restrictions, we can only outline the FPT architecture – many aspects that
deserve and require a detailed discussion, like isolation properties, vertical distribution of
business logic, cache synchronization, “hot spot” data objects, fault tolerance, and various
optimization techniques cannot be addressed in this paper. Instead, we focus on our
approach to decouple process topology and data distribution scheme. The following section
introduces the 5,�WUHH� which is the basis for separating these two concerns.



��� 5,�7UHHV
We use RI-trees for specifying a replication and distribution scheme for data objects. We
assume that the set of all possible data objects is partitioned into one or more disjoint
GRPDLQV, for instance

'RPDLQ��: All data objects of type Customer
'RPDLQ��: All Orders with date < 1/1/2002
'RPDLQ��: All Orders with date ≥ 1/1/2002.

For each domain a separate RI-tree is specified that describes where data objects of that
domain can be stored. For simplicity we will focus on a single domain and the
corresponding tree only.

An RI-tree is a tree whose leaf nodes represent different transactional datastores and whose
inner nodes are either R-nodes (“replication”) or I-nodes (“integration”). Intuitively and
informally, an R-node means that an object is replicated and placed LQ�DOO�VXE�WUHHV of the
node. An I-node means that an object is placed LQ�H[DFWO\�RQH�VXE�WUHH of the node. Please
note that R-nodes and I-nodes do not correspond to processes in a topology. In fact, RI-
trees and process topology are orthogonal concepts.

Figure 4 shows an example of an RI-tree that specifies replication and distribution among
six datastores labeled ds2, ds3, ds5, ds6, ds8, and ds9. The given tree specifies that there
are three RSWLRQV for storing an object, each option defines a possible set of KRPH
GDWDVWRUHV:

2SWLRQ��: home datastores 2, 3, and 5
2SWLRQ��: home datastores 2, 3, and 6
2SWLRQ��: home datastores 8 and 9

For each newly created object one option, which defines the object’s home datastores, has
to be selected. Then the object has to be stored in DOO these home datastores (replication).
Once an option has been selected for an object, its home datastores cannot be changed.
Note that partitioning of objects can be achieved either by creating domains or by using I-
nodes (or both). While domains need a pre-defined criterion based on object type and/or
attribute values, I-nodes are more flexible and allow new objects to be inserted, e.g.,
following a load balancing, round robin, random, or fill ratio based scheme.

R

I

ds6 ds8 ds9

Figure 4. Example of an RI-tree.
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Formally, an RI-tree T is a rooted tree (V, E), V is the vertex set and E the edge set. V =
RNODES ∪ INODES ∪ DATASTORES. The three sets RNODES, INODES, and
DATASTORES are pairwise disjoint. DATASTORES is a non-empty subset of the set of
all datastores DSall = {ds1, ds2, ..., dsmaxds}. T’s inner nodes are RNODES ∪ INODES,
its leaf nodes are DATASTORES. Now we introduce a function options that maps each
element of V to a subset of 2DSall. For each RI-tree T its options are the result of a function
options(root(T)), or short: options(T). options is recursively defined as follows:

The following example shows the formal representation of and options for the RI-tree from
Figure 4:

T = (V, E)
V = { u1, u2, u3, u4, ds2, ds3, ds5, ds6, ds8, ds9 }
E = { (u1, u2), (u2, u4), (u1, u3), (u2, ds2), (u2, ds3), (u4, ds5), (u4, ds6), (u3, ds8), (u3, ds9) }
DATASTORES = { ds2, ds3, ds5, ds6, ds8, ds9 }
RNODES = { u2, u3 }
INODES = { u1, u4 }
root(T) = u1

options(u4) = {{ds5}, {ds6}}
options(u2) = {{ds2, ds3, ds5}, {ds2, ds3, ds6}}
options(u3) = {{ds8, ds9}}
options(T) := options( root(T) ) = {{ds2, ds3, ds5}, {ds2, ds3, ds6}, {ds8, ds9}}

��� 2EMHFW�5RXWLQJ
Having introduced the RI-tree formalism in the previous section, we can now discuss how
RI-trees and process topology are related and how objects can be routed.

����� ,PSRUWV�DQG�([SRUWV

For each data domain domi a separate RI-tree Ti defines which datastores are potential
home datastores for objects of the given domain. We propose a simple import/export
scheme for process topologies that helps us to determine which domains and datastores can
be accessed by which processes.

Each process in the DAG is assigned an attribute labeled H[SRUWV and each communication
relationship (edge) is assigned an attribute labeled LPSRUWV. Both attributes contain a set of
tuples of the form (GRPDLQ, GDWDVWRUH) as values. Each tuple represents the ability to access
objects of a GRPDLQ, which are stored in a specific GDWDVWRUH. Access can be either direct or
indirect via other processes. Figure 5 illustrates an example of an import/export scheme for

{M 1 ∪ M2  ∪ ... ∪ Mm | (M1, M2, ..., Mm)
       ∈ options(v1) × options(v2) × ... × options(vm),
       where {v1, v2, ..., vm} = {v | (u,v) ∈ E} }
U w∈{v | (u, v) ∈ E}  options(w)
{{u}}

for u∈RNODES

for u∈INODES
for u∈DATASTORES

options(u) =



three domains in a process topology with two datastores. In an FPT enterprise application
import/export rules for a process and its connections to server processes are part of the
configuration data of that process.

For each application process p and domain domi we define canAccess(p, domi) := { dsk |
(dsk, domi) is element of the union of all imports of p’s outgoing edges}. canAccess is
the set of datastores that can be accessed (directly or indirectly) by p for a given domain
domi.

����� )RUPDO�'HILQLWLRQ�RI�2EMHFW�5RXWLQJ

When an application process root transactionally accesses a set of objects, i.e. performs
insert, update, delete, and query operations, all objects in the set are copied by value to
root’s cache and new versions are created locally for changed objects. On commit all new
versions have to be propagated “down” the DAG topology via client/server connections and
applied to datastores. A changed object o is either

• QHZ, i.e. it has been inserted by the application but not yet persistently stored, or

• H[LVWLQJ, i.e. an option home(o) has already been selected and a previous version of
the object has been stored in the corresponding home datastores.

New objects have to be assigned an option home(o) and have to be stored in all home
datastores defined by that option. For existing objects (updated or deleted) all home
datastores have to be identified and accessed. The process of propagating changed objects
through the topology is called REMHFW�URXWLQJ.

Formally, an object routing R for an object o of domain domi is defined by an application
process root, a set of datastores rtargets and a set of paths rpaths. For each datastore ds ∈
rtargets there is a path in rpaths that starts at root and ends at ds. Each path in rpaths
ends at a datastore ds ∈ rtargets and all edges in the path must contain (domi, ds) in their
LPSRUWV.

Figure 5. Example of an import/export scheme for process topologies.
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For an existing object o we call an object routing FRUUHFW iff rtargets = home(o), i.e. the
object is routed to all its home datastores. For a new object o we call an object routing
correct iff rtargets ∈ options(Ti), i.e. a valid option is selected and the object is routed to
all home datastores of that option.

����� $�&RQFHSWXDO�)UDPHZRUN�IRU�2EMHFW�5RXWLQJ

A simple approach for object routing would let the root process locally pre-calculate an
object routing R on commit. This simple approach has two important disadvantages:

• Instead of knowing only processes that are directly connected, the root process
would have to be aware of the structure of the complete underlying topology.

• An object routing can be optimized with regard to various parameters, for example,
current and maximum load of processes and datastores, clustering of objects in
datastores, bandwidth of connections, or fill ratio of datastores. Each potential root
process would have to obtain and track these parameters of other processes, which
does not scale for many client processes.

Instead of suggesting one of countless possible optimization techniques for object routing
we present a conceptual framework that is independent of specific optimization parameters
and decisions. To preserve the autonomy of subsystems we only require each process to
know its direct server processes and all RI-trees. We propose that an object routing is
calculated incrementally during the propagation process and decisions are deferred for as
long as possible/necessary. Each process recursively delegates routing decisions to its
server process(es) unless RI-tree, import/export schema, and topology require a local
decision.

Each application process p involved in an object routing performs a ORFDO� URXWLQJ (see
Figure 6) as follows:

1. With a URXWLQJ�PHVVDJH a client c propagates an object o of domain domi together
with a set of datastores (represented by ids) homeCandidatesIn to p.

2. Let p have s servers child1..childs. p uses a ORFDO�URXWLQJ�IXQFWLRQ to calculate s sets
of datastores homeCandidatesOut1..homeCandidatesOuts, one for each server
of p. Each set homeCandidatesOutk�must be a subset of homeCandidatesIn. In
addition, for each datastore ds in homeCandidatesOutk�there has to be an element
(domi, ds) in the LPSRUWV of edge (p, childk).

3. For each non-empty set homeCandidatesOutk the following is done:
• if childk is an application process then p propagates o and

homeCandidatesOutk�to its server childk with a routing message. Each childk

in turn performs a local routing for o and takes homeCandidatesOutk� as its
homeCandidatesIn input parameter.

• if childk is a datastore then p temporarily stores o and childk for phase 2 (in
which o’s version number is checked and o is stored to childk – see Subsection
4.3).

4. Replies for routing messages sent in 3. are collected and a reply message is sent to
client c.



The local routing function can be application-specific and even process-specific as it is
independent of routing functions of other processes. A root process skips step 1: o is
determined by the current transaction and homeCandidatesIn is set to {ds | there is an e
∈ options(Ti) with ds ∈ e ∧ e ⊆ canAccess(p, domi)}. Constraints for root processes
and rules for local routing functions depend on whether o is new or existing:

5RXWLQJ�D�1HZ�2EMHFW

A root process requires that options(Ti) contains an element e with e ⊆ canAccess(p,
domi). A correct routing can be guaranteed when the local routing functions of all involved
processes observe the following rules:

(a) homeCandidatesOut1..homeCandidatesOuts are pairwise disjoint.

(b) For each pair (x, y) of datastores (x ∈ homeCandidatesOutm, y ∈
homeCandidatesOutn, and m≠n) their lowest (deepest) common ancestor in the
RI-tree Ti is an R-node.

(c) Let del := { ds | ds ∈ homeCandidatesIn, but ds is not included in the union of
all homeCandidatesOut1..homeCandidatesOuts}. For each ds in del there must
be a node x in the RI-tree Ti so that
• x is ancestor of ds or x = ds,
• x is child of an I-node y,
• all descendants of x (including x itself) that are included in homeCandidatesIn

are also included in del,
• and there is at least one element in homeCandidatesIn that is not included in

del and is a descendant of y in Ti.

Figure 6. Each application process performs a local routing using a local routing
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The example in Figure 7 shows an RI-tree and two different correct routings (both with
process A as root) in the same topology. For simplicity we assume a PD[LPXP
LPSRUW�H[SRUW�VFKHPH, i.e. all datastores export domi, everything an application process can
export is exported, and everything an application process can import is imported. Solid
arrows between application processes indicate the path of routing messages in transaction
phase 1. A solid arrow from an application process to a datastore indicates access to that
datastore in phase 2. Dotted arrows represent edges not used in the routing. The value of the
parameter homeCandidatesIn for each involved application process is shown above the
rectangle that represents the corresponding process.

Please note that the examples in Figure 7 and Figure 8 are not real world examples. Their
RI-trees are complex and intentionally do not match the topology so that they clearly
demonstrate how object routing works. In realistic scenarios we expect typical RI-trees to
have only one or two levels of inner nodes.

5RXWLQJ�DQ�([LVWLQJ�2EMHFW

A root process requires that home(o) ∈ canAccess(p, domi), although home(o) itself
may not be known to the root process and other processes. We suppose that p knows a set
homeConfirmed ⊆ homeCandidatesIn, which contains a subset of o’s home datastores
(see Subsection 4.3). homeConfirmed may but is not required to be included as a
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Figure 7. Two different correct routings for the same newly created data object.
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parameter in routing messages to server processes. A correct routing can be guaranteed
when the local routing functions observe the following rule – in addition to rules (a) and (b)
given for new objects:

(c) Let del := { ds | ds ∈ homeCandidatesIn, but ds is not included in the union
of all homeCandidatesOut1..homeCandidatesOuts}. For each ds in del
there is no element e ∈ options(Ti) so that ds ∈ e ∧ homeConfirmed ⊆ e.

In some cases, especially when o is a replicated object and Ti contains I-nodes, an
application process may face the situation that it cannot immediately produce a correct
routing. In that case, one or more SUREH�TXHULHV�are sent to server processes (sequentially or
in parallel) to confirm or rule out that datastores from homeCandidatesIn \
homeConfirmed are home datastores of o:

• Each confirmed datastore dsconf is added to homeConfirmed.

• For each datastore dsnotfound that is reported not to be a home datastore, dsnotfound

and all elements of { ds | ds ∈ homeCandidatesIn, ds≠dsnotfound, the lowest
(deepest) common ancestor x of dsnotfound and ds in Ti is an R-node, and all nodes
between dsnotfound and x are either I-nodes with only one child or R-nodes} are
removed from homeCandidatesIn.

Eventually, a correct routing can be produced – at the latest when homeCandidatesIn =
homeConfirmed. Probe queries can be expensive, especially when options(Ti) contains
many options and each of these options contains many datastores.

Figure 8 illustrates a scenario for routing an existing object where A, the root process, has
to perform a probe query first to produce a correct routing. The existing object’s home
datastores are ds2, ds3, ds5, ds6, but only ds3 is initially known. Again, we assume a
maximum import/export scheme.

So far, only routing of a single object has been discussed. When a transaction accesses
multiple objects then complete sets of objects are to be routed. Often it is possible to route

Figure 8. A correct routing for an existing data object.
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them together using only a few coarse-grained messages for inter-process communication.
On the way “down” the DAG topology sets may be split into smaller subsets that are
treated differently and routed individually. Ideally, all objects can be routed as one set to a
single datastore – in that case no distributed commit protocol is required.

When Pattern 6 (mesh, see Subsection 2.1) has been applied then a process may receive
two or more routing messages for the same data object under certain circumstances. This is
not a problem, since all these messages can be processed independently. To integrate two
systems with Pattern 5, the data distribution schemes of both systems have to be merged:
The new scheme simply consists of all domains and RI-trees of both data distribution
schemes (union). Special treatment is needed for domains that exist in both systems (for
example, each system stores Customer objects and both sets have to be integrated).
Provided there are no duplicates or these are removed first, a new RI-tree is constructed by
placing an I-node as a new root on top of both previous RI-trees for the domain.

��� 5HODWHG�:RUN
To our knowledge, neither data-centric custom process topologies nor the flexibility aspect
of these topologies have been discussed in the context of enterprise applications before.

The distributed objects paradigm, especially CORBA [5], offers the powerful concept of
transparencies, including access and location. But it does not sufficiently address the fact
that in many topologies inter-process access to data objects is restricted and most processes
are only allowed to directly communicate with a small subset of other processes in the
topology (see Section 2).

TopLink [11], an object-relational mapping framework, supports so called UHPRWH�VHVVLRQV
that are similar to Type O connections (see Subsection 4.1) but can only be employed to
connect TopLink clients to TopLink servers. Since client and server roles are fixed and
only one server per client is supported, remote sessions are rather limited and cannot be
used to build arbitrary process topologies.

Research in the context of peer-to-peer networks focuses on flexible topologies and routing
(for example [6]), but usually objects are coarse-grained and access is both read-only and
non-transactional.

��� 6XPPDU\�DQG�&RQFOXVLRQ
We view enterprise applications as topologies of distributed processes that access business
data objects persistently stored in transactional datastores. We explained why many large-
scale applications need custom topologies to address their application-specific
requirements, e.g., regarding scalability and fault tolerance. There are several well-known
topology patterns for custom topologies, which, when combined, lead to arbitrary DAG
topologies. We categorized connections offered by current middleware and explained why
it is difficult to build DAG topologies on top of them.

Then we outlined principles of our FPT architecture for object-oriented, data-centric
enterprise applications with arbitrary DAGs as underlying process topologies. The



architecture is based on a network of object manager components which cooperate to
access data objects. In contrast to existing middleware topologies are IOH[LEOH, i.e. easy to
adapt to changing requirements, because application, topology, and data distribution
scheme are decoupled and can be specified independently. We introduced RI-trees for
specifying a data distribution scheme (including replication) and a conceptual framework
for RI-tree–based object routing in DAG topologies.

The framework does not define a specific routing strategy, instead only the general
approach and constraints for correct object routing are given. A local routing function can
be specified separately for each node in the topology. These functions typically have a large
set of routing possibilities from which they can select one according to their (private)
optimization criteria. This allows a broad range of application-specific optimization
techniques to be integrated. For all topologies and RI-trees a correct routing can be
produced, provided that the corresponding domains/datastores can be reached by a root
process. The enterprise application can even tolerate the loss of redundant processes and
connections at runtime when the corresponding tuples are removed from the import/export
scheme.

The fact that arbitrary topologies and RI-trees are supported does not mean that all
combinations necessarily lead to efficient systems. For example, extensive use of
replication always has an impact on performance. Selecting HIILFLHQW topologies and
distribution schemes for an application is still a challenging task and up to software
architects. But once these decisions are made, our architecture significantly simplifies the
development of an enterprise application and improves maintainability by factoring out the
topology aspect.

We view the FPT architecture as a set of concepts that can either be used for extending
existing enterprise application frameworks or be used as a basis for new frameworks.
Currently, we follow the latter approach and are working on a framework based on Java,
RMI, relational databases as datastores, and xa transactions. A first prototype has already
been completed. Future work includes a detailed performance and scalability analysis, case
studies, and a broad range of optimizations for queries, routing, and synchronization in
flexible DAG topologies.
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