
1

Why It Is So Difficult to Build N-Tiered Enterprise
Applications

Technical Report B 01-05, Nov. 2001

Christoph Hartwich*
Freie Universitaet Berlin

Institut für Informatik
Takustrasse 9

D-14195 Berlin, Germany

hartwich@inf.fu-berlin.de

$%675$&7

6WUXFWXULQJ� HQWHUSULVH� DSSOLFDWLRQV� LQWR�PXOWLSOH� WLHUV� LV� D� ZHOO�
WULHG�DQG�VXFFHVVIXO�DSSURDFK�WR�LPSURYH�VFDODELOLW\�DQG�DFKLHYH
D� EHWWHU� VHSDUDWLRQ� RI� FRQFHUQV�� 8QIRUWXQDWHO\�� VWDWH�RI�WKH�DUW
REMHFW�RULHQWHG� PLGGOHZDUH� VWDQGDUGV� DQG� FRPSRQHQW� PRGHOV�
OLNH� &25%$�� 50,�� (QWHUSULVH� -DYD%HDQV�� DQG� WKH� &25%$
&RPSRQHQW� 0RGHO�� GR� QRW� VXSSRUW� ZHOO�VWUXFWXUHG� DSSOLFDWLRQV
ZLWK� DQ� DUELWUDU\� QXPEHU� RI� WLHUV�� $WWHPSWV� WR� EXLOG� Q�WLHU
DSSOLFDWLRQV� RQ� WRS� RI� WKHP� RIWHQ� UHVXOW� LQ� EDG� SHUIRUPDQFH�
XQH[SHFWHG� FRPSOH[LW\�� DQG� VHYHUH� DUFKLWHFWXUDO� SUREOHPV�� 7KLV
SDSHU� SURYLGHV� D� GHILQLWLRQ� RI� Q�WLHU� VWUXFWXUHV�� PRWLYDWHV� WKHLU
XVH� IRU� ODUJH�VFDOH� HQWHUSULVH� DSSOLFDWLRQV�� DQG� DQDO\]HV
SUREOHPV� WKDW� RFFXU� ZKHQ� Q�WLHUHG� HQWHUSULVH� DSSOLFDWLRQV� DUH
GHYHORSHG� EDVHG� RQ� REMHFW�RULHQWHG� PLGGOHZDUH� VWDQGDUGV� RU
FRPSRQHQW� PRGHOV�� ,Q� DGGLWLRQ�� DQ� DSSURDFK� WR� VROYLQJ� WKHVH
SUREOHPV�LV�RXWOLQHG�

.H\ZRUGV
n-tier, layer, enterprise application, middleware, distributed
systems

��� ,1752'8&7,21
Enterprise applications are distributed, transactional multi-user
applications; they play a key role in many organizations. For years
and until today, large-scale enterprise applications have been
successfully built with a special emphasis on multi-tier structures.
This approach has proven to lead to scalable, flexible, and
modular designs with a good separation of concerns. Despite their
success and widespread use, multi-tier structures receive relatively
little attention in the research community. In this paper we take a
fresh look at them in the context of state-of-the-art object-oriented
middleware standards and component models, like CORBA, RMI,
Enterprise JavaBeans, and the CORBA Component Model [5, 8,
6, 9]. The main contributions of this paper are (1) the definitions
it provides, (2) an analysis of typical problems that occur when n-
tiered enterprise applications are developed based on object-
oriented middleware standards or component models, and (3) an
approach for overcoming these problems.

In Sections 2 and 3 we define layers, tiers, and n-tier structures.
Section 4 introduces enterprise applications, motivates the use of
n-tier structures for them, and discusses performance aspects of n-
tiered enterprise applications. Section 5 identifies and analyzes
problems that are likely to occur when n-tiered enterprise
applications are built on top of object-oriented middleware and
component models. Section 6 outlines ideas and basic concepts of
a framework that provides explicit and efficient support for n-
tiered enterprise applications. Finally, in Section 7, we provide a
brief summary.

��� /$<(56
To lay a solid foundation for a discussion of n-tiered enterprise
applications we start with some basic definitions. This section
defines and describes the concept of OD\HUV and PXOWL�OD\HU
VWUXFWXUHV.

“Layer” is a term that refers to an entity and its geometric
relationships to other entities. When we talk about PXOWLSOH layers
that implies that there is a total ordering of the given entities with
each entity having “contact” with at most two neighboring
entities, as depicted in Figure 1.

The term “layer” is also used as a metaphor to describe the
architecture of a software system [3, 7]. In that context a layer is a
category that contains artifacts of the given software system
(functions, classes, object instances, components, files,
configuration data, ...).

A multi-layer structure requires a OD\HULQJ� FULWHULRQ that defines
decomposition rules and thus the association of artifacts with

)LJXUH����$�OD\HUHG�VWUXFWXUH�

Layer 1

Layer 2

Layer n

���

* This research was supported by the German Research Society, Berlin-Brandenburg Graduate School in Distributed Information Systems (DFG grant no. GRK 316).

2

categories. A layering criterion is based on one or more OD\HULQJ
VW\OHV that define an abstract way of decomposing a system into
layers. Examples of layering styles are:

• Physical distribution – Layers are aligned with machine
boundaries in a distributed system.

• Levels of abstraction – Each layer L provides services for
layer L�� with the help of lower level services consumed from
layer L��.

• Separation of application-specific aspects, for instance,
logging, presentation, access control, request preprocessing,
security, constraint checking, persistence, or error handling.

• Implementation language or runtime environment – Artifacts
written in the same programming language or that require the
same runtime environment are grouped together. For
example, Java classes are placed in layer L, and the C++
implementation of their native methods is placed in layer L+1.
This is done regardless of the level of abstraction provided
by the Java and C++ method implementations.

Usually a combination of layering styles is selected to constitute a
layering criterion. Also, some styles may apply only to a subset of
layers. For example, a layering style may help to clearly separate
two specific layers but is less important for the definition of the
other layers. In theory, most layering styles are orthogonal to each
other. In practice, they are not, because developers create artifacts
with respect to the layering criterion, i.e. in such a way that the
layering styles used do not conflict. Precisely defining a suitable
layering criterion and designing appropriate artifacts for it is one
of the main contributions of a software architect to a layered
software system.

A multi-layer structure covers a complete software system or only
a part of it. Artifacts are usually associated with a single layer, but
sometimes it makes sense to assign them to multiple layers. A
common example is a class Message that is used in one layer for
sending, and in another for receiving a message.

There has to be a total ordering of layers. Ideally, each layer
communicates with neighboring layers only. This (voluntary)
restriction significantly reduces the number of potential
dependencies developers have to be aware of. Additionally,
communication can be further restricted by allowing only a higher
layer (client) to initiate communication with a lower layer
(server). Restricting communication in a complex software system
and decomposing it into layers that are clearly separated
subsystems significantly reduces complexity and provides a good
separation of concerns.

There are several variants of and modifications to layered
structures to meet specific requirements of individual software

projects. For example, a layer L may be allowed to directly access
both layers L+1 and L+2, as shown in Figure 2.

This introduces more complexity but may be necessary for
performance reasons or because of a black-box component in
layer L+1 lacking some desired functionality. Such modifications
are reasonable, provided their scope is limited, they are well-
documented, and their benefit outweighs the increase in
complexity.

Often, a layer can be further refined by horizontally subdividing it
into independent subcategories. These subcategories can again be
treated as layers and may even form subsystems with an
individually layered structure. An example is shown in Figure 3.

��� 7,(56
Having defined layers and multi-layer structures we will have a
closer look at tiers, multi-tier structures, and n-tier structures in
this section.

A WLHU is a layer that corresponds to a process or a collection of
processes. A tier contains all artifacts of a software system that
can be associated with the tier’s process(es). Consequently, we
can define a PXOWL�WLHU� VWUXFWXUH as a multi-layer structure with a
layering criterion that is dominated by a process layering style.
Other layering styles can only serve as a further refinement of the
structure defined by the process layering style.

Multi-tier structures are especially suited for distributed systems
as machine boundaries always denote process (address space)
boundaries. Often, each machine will run only exactly one
(application) process that is explicitly incorporated into the multi-
tier structure, although, in principle, any number of processes may
run on a single machine. The assignment of processes to machines
in a system is independent of its multi-tier structure.

Figure 4 shows an example of a multi-tier system with its
processes (squares), communication relationships (edges), and
tiers (gray rectangles).

)LJXUH����5HOD[HG�YDULDQW�RI�D�OD\HUHG�VWUXFWXUH�

)LJXUH����([DPSOH�RI�KRUL]RQWDOO\�VXEGLYLGHG�OD\HUV�

#1 Client tier

#2 Business logic tier

#3 Data access tier

#4 Database tier

)LJXUH����([DPSOH�RI�D�PXOWL�WLHU�V\VWHP�

Layer 2

with layered
subsystems

Layer 1

Layer 3

Layer L

Layer L+1

Layer L+2

3

The condition that layers should communicate with neighboring
layers only applies to multi-tier structures, too, and is much more
important. Relaxing this condition does not only result in more
complexity but can have a negative impact on scalability, security,
and configuration.

In the past years the term Q�WLHU has been used with varying
semantics and not always consistently. The most common
meanings found are:

(a) A synonym for “multi-tier” (which simply means “more than
one tier”).

(b) A fixed number of tiers that is greater than three (in contrast
to two-tier and three-tier structures).

(c) An arbitrary, variable number of tiers. The number of tiers
can be freely chosen and, if necessary, easily be adapted.

Option (a) is unsatisfactory because giving the same entity two
names does not help to refine our terminology and increases the
risk of misunderstanding. (b) has the disadvantage that it defines a
structure simply by defining what it is not. Furthermore, it only
makes sense in the domain of enterprise applications where
people have a common understanding of two- and three-tier
structures (see Section 4). Even as a domain-specific term it is
rarely useful because for describing concrete structures it is much
more informative to state the actual number of tiers (e.g. “a five-
tier application”).

For our work we adopted meaning (c). Multi-tier structures can
either be n-tier structures RU have a fixed number of tiers. A
concrete instance of an n-tiered software system usually has a
specific number of tiers, but its architecture and design are
flexible and allow for an easy adaption of the number of tiers.

��� (17(535,6(�$33/,&$7,216
We define enterprise applications as distributed, transactional,
multi-user applications that are employed by organizations to
control, support, and execute business processes. Transactional
behavior is required to guarantee consistency of business data
being processed. Historically, the need for distribution originated
from the fact that multiple users had to work with an application,
each one requiring an own front-end (terminal). Today’s
enterprise applications often form much more complex distributed
systems, for instance, because of scalability or fault tolerance
requirements, or because of the integration of several existing,
previously isolated systems.

Most enterprise applications have been constructed based on the
concept of multi-tier structures. Typically, the first tier is
responsible for presenting the user interface, while the last tier
persistently stores business data. In that context the terms “two-”
and “three-tier application” are being used to designate two very
specific structures:

7ZR� WLHUV are associated with a client tier that contains
presentation and a database tier that stores business data and is
directly accessed by the client tier. Business logic is implemented
either entirely within the client tier or within the database tier or
distributed among both tiers.

7KUHH�WLHU applications aim at separating business logic from
presentation and database concerns by introducing an additional
middle tier. The middle tier mediates between client tier and

database tier and contains most of the business logic - although
some parts may still reside in the other tiers.

Depending on the amount of business logic and application-
specific data access logic they contain, clients are often referred to
as “fat”/“rich” (much), “thin” (little), or “ultra-thin” (none).
Examples for ultra-thin clients are web browsers or X terminals.

���� 1�7LHUHG�(QWHUSULVH�$SSOLFDWLRQV
Enterprise applications are not limited to two or three tiers, in
fact, there are many cases where additional tiers can be of
significant advantage, for example:

• A FRQFHQWUDWLRQ�WLHU – Instead of connecting a large number
of clients (e.g., >1k) directly to a server machine, a group of
replicated “concentration servers” mediates between clients
and server machines. Each concentration server handles
requests of a subset of the clients, optionally performs some
pre-processing, and forwards the requests to a server
machine. Thereby the burden of handling a large number of
connections (I/O, CPU cycles, memory) is shifted from the
server machines to the concentration tier which improves
scalability and throughput.

• A ZRUNIORZ� WLHU that is placed between presentation and
business logic. The tier manages the execution of workflows,
routes data, and assigns work items to users.

• An DFFHVV� FRQWURO� WLHU that provides fine-grained,
application-specific access control. Because the access
control code is strictly separated from other tiers it can be
kept simple, isolated, and under the physical control of a
security specialist.

• When functions are to be replicated, for instance, because of
fault tolerance or (in conjunction with load balancing) to
improve a system’s throughput, it is often reasonable to place
them in a separate new tier.

• An DSSOLFDWLRQ� LQWHJUDWLRQ� WLHU – When two or more
applications are to be integrated (e.g., an application has to
access data managed by a legacy system) it is a well-tried
approach to introduce a new tier that mediates between the
applications.

Because typical enterprise applications are constantly subject to
change, it is reasonable to design them as n-tiered applications.
Ideally, it should be possible to add or remove tiers without
significantly affecting code and design of other tiers. This allows
for a clear, intuitive, and flexible separation of many application
concerns.

The main architectural building-blocks of such an n-tiered
application are distributed, loosely coupled processes with only
few dependencies. Replication fits well into the model (and is
encouraged), and evolution and integration with other n-tiered
applications becomes much easier.

���� 3HUIRUPDQFH�$VSHFWV
Performance is an aspect that is usually paid close attention to
during the development of a distributed system. A prevalent
argument against using more tiers for enterprise applications than
absolutely necessary is the potential overhead. Each additional tier
can increase latency, and thus reduce response time because in

4

many situations control flow and data have to pass through all
tiers of a system.

While this is true, we believe that the effect is overrated. Whether
performance is acceptable, or not, is usually determined by other
factors, for example, caching strategies, adequate hardware for a
given load, available bandwidth, or granularity of inter-process
communication. For a reasonable number of tiers the resulting
latency seems acceptable as, in the worst case, it grows only
linearly with the number of tiers. We think that even up to ten
tiers would be acceptable from a performance point of view –
although it is very unlikely that an application will need that many
tiers.

Moreover, the positive effects of n-tier structures on performance
must also be taken into account: Applying replication to specific
components becomes much easier, which in turn helps to improve
scalability and throughput. In addition, shifting work to higher or
lower tiers can help to relieve machines of a tier that would
otherwise become a bottleneck. In that case the extra processing
power of machines in an additional tier can very well offset the
increased communication costs.

Finally, we believe that the reduction of complexity in n-tiered
enterprise applications (through improved modularity and better
separation of concerns) by far outweighs potential performance
penalties. With less complexity development and maintenance
costs can be significantly reduced, as well as the risk of failure.
Compared to the costs of higher complexity the costs of extra
machines (for additional tiers) and network bandwidth are
relatively low.

��� 352%/(06�:,7+�2%-(&7�25,(17('
0,''/(:$5(�$1'�&20321(17
02'(/6
Enterprise applications are rarely built from scratch. Instead they
are commonly built on top of a software infrastructure that
provides basic functionality like persistence, transactional access,
and remote communication. In theory, this allows enterprise
application developers to focus on application-specific aspects
while leaving low-level, infrastructure aspects to infrastructure
component vendors. Today, object-oriented middleware standards
(e.g., CORBA or Java/RMI) and component models (like
Enterprise JavaBeans and the CORBA Component Model) play a
key role in many state-of-the-art software infrastructures.

Unfortunately, developers encounter significant architectural and
performance problems when attempting to build n-tiered
enterprise applications on top of object-oriented middleware and
component models. These problems closely relate to how EXVLQHVV
REMHFWV are represented and incorporated into the infrastructure.

Business objects are those objects (or components) in an
enterprise application’s object model that cover domain-specific
aspects. They represent real or abstract entities of the business
domain, for example, Customer, Order, or Payment. We
distinguish two types of business objects: %XVLQHVV� GDWD� REMHFWV
are data-centric and primarily represent business data that are
stored in persistent storage and accessed within transactions.
%XVLQHVV�SURFHVV�REMHFWV are process-centric and primarily contain
business logic that accesses business data objects. In the following
discussion we will focus on business data objects only.

Current object-oriented middleware and component models are
centered around the concept of remote objects. The standard way
of incorporating business data objects into a system is to represent
them as remote objects that are located in the second last tier of
the enterprise application. Their persistent state is stored in the
last tier (typically in a relational database) with the help of
services provided by, for example, JDBC, CORBA’s Persistent
State Service, or various object-to-relational mapping tools.

This approach causes a number of severe problems for n-tier
applications (and for many multi-tier applications as well) that are
outlined in the following subsections.

���� &RUUXSWHG�1�7LHU�6WUXFWXUH
In an n-tiered enterprise application it is very likely that most tiers
contain business logic that needs to access business data objects.
But with business data objects being represented as remote objects
in tier Q-1, all tiers are forced to bypass intermediate tiers and
directly access tier Q-1 via remote calls, as depicted in Figure 5.

This violates the condition that tiers should communicate with
neighboring tiers only (see Sections 2 and 3) and thus
significantly complicates the construction of well-structured n-tier
applications. Tiers between the calling tier and tier Q-1 are given
no chance to interfere and provide their services which renders
them useless. For example, a security tier, a concentration tier, or
a tier that caches business data require to be involved and should
not be skipped.

The problem occurs in all n-tier and multi-tier applications where
business logic and business data objects are distributed over three
or more tiers, excluding the database tier. To avoid the problem
the total number of tiers must not exceed four with ultra-thin
clients and three in all other cases. This is one of the main reasons
why architects stick to these structures, as additional tiers would
corrupt the design.

In principle, this architectural problem could be solved by adding
artifacts to each tier that act as proxies to artifacts of the
underlying tier that, in turn, can be proxies. This is
straightforward for procedural systems where each tier can
provide a facade with functions that are either implemented

)LJXUH����7LHUV�DUH�IRUFHG�WR�GLUHFWO\�DFFHVV�WLHU�Q���
E\SDVVLQJ�RWKHU�WLHUV�LQVWHDG�RI�DGKHULQJ�WR�WKH�WLHUHG

VWUXFWXUH��GDVKHG�DUURZV��

Tier Q

Tier Q-1

Tier Q-2

Tier Q-3

Tier 1
��� ���

Datastore tier

Business data
objects =
remote objects

5

locally or simply call their equivalent in the underlying tier.
However, for objects, especially business data objects, there is no
such simple solution. Object identity, references between business
data objects, references in parameters or return values of remote
operations, garbage collection, and transactional access are just a
small selection of issues. Also, introducing optimization
techniques like caching or bulk transfer of data would lead to
additional challenges. In any case, such an approach would
require major extensions to the infrastructure. It is not supported
by existing object-oriented middleware and component models.

����)LQH�*UDLQHG�,QWHU�3URFHVV
&RPPXQLFDWLRQ
The granularity of inter-process communication has a significant
impact on performance. A fine-grained communication style often
drastically increases network traffic, workload, and latency, and
thus can be a severe threat to performance and scalability [10].
Unfortunately, with existing object-oriented middleware and
component models only fine-grained communication is well
supported. Access to business data objects is provided on a per-
attribute basis.

For most applications it is not acceptable to perform a remote
operation call for each business data object attribute to be
accessed. For example, a client with a complex, powerful GUI
that displays several tables, trees, and combo boxes containing
business data, could easily issue hundreds of remote invocations
just for displaying a single view. But more efficient access
techniques are not directly supported and are completely left to
application developers (see 5.3 and 5.5).

���� $SSOLFDWLRQ�'HVLJQ�'RPLQDWHG�E\
3HUIRUPDQFH�$VSHFWV
With the infrastructure lacking support for more efficient access,
application developers have to design all parts of an enterprise
application with respect to performance. This is not desirable
because architecture, object model, and business logic become
heavily dependent on performance optimization aspects.

The problem is likely to be encountered in all applications where
business logic (or presentation) on other tiers needs direct access
to business data objects. Only three-tier applications with ultra-
thin clients do not suffer from it as the middle tier contains both
business logic and business data objects and the presentation is
pre-calculated there, too. This is one of the main reasons why
ultra-thin clients are so popular and their use is advocated,
although they are often unsuitable for complex, powerful, and
user-friendly user interfaces.

Typical optimization strategies used for reducing the number of
remote operation calls are:

(a) New data structures and access methods are defined to
transfer multiple attribute values of a business data object
with a single remote call. Alternatively, the complete internal
state of business data objects can be extracted and transferred
with the help of container classes that are either generic (e.g.,
Java Hashtable) or business data object specific (e.g.
AccountState for a business data object Account).

(b) Direct remote access to business data objects is considered
strictly prohibited in order to prevent fine-grained access.
They can be accessed by other tiers only through a
procedural facade (e.g. EJB session beans) that resides local

to the business data objects. The facade contains operations
for efficient bulk transfer of object state. For example, the
states of a set of business data objects are transmitted as a
result of a query operation. The EJB 2.0 specification [9]
introduces the concept of GHSHQGHQW�YDOXH�FODVVHV that helps
application developers to implement a relaxed variant of this
optimization strategy: Business data objects are classified
into two types, coarse-grained entity beans that are remotely
accessible and fine-grained dependent objects that are passed
by value. Entity beans provide a procedural facade for
remotely accessing data of their private, dependent objects.

(c) State information of business data objects is cached in other
tiers so that subsequent accesses to the same objects can be
performed locally. Caching can be transparent, for example,
by using smart proxies (which leads to proxy problems
outlined in 5.1), or explicit by using a cache structure with an
entry for each cached business data object state. Cache
entries can be generic or business data object specific (see a).

���� &RUUXSWHG�2EMHFW�0RGHO
While the strategies listed in the subsection above help to improve
performance they often damage the quality and usefulness of an n-
tiered enterprise application’s object model.

It is paradoxical that, on the one hand, the object model is
considered to be one of the main foundations of an enterprise
application and is carefully populated with objects, but, on the
other hand, many parts of the business logic are denied direct
access to business data objects. Working with data structures that
contain state information instead of working with the original
business data objects means to abandon object-oriented principles
and features in many cases.

Upgrading the data structures to objects again may preserve the
object-oriented view, but results in a duplication of all business
data object classes in the object model because different versions
are needed for the second last tier on the one hand and all tiers
above on the other hand.

���� 3URSULHWDU\�DQG�&RVWO\�([WHQVLRQV�WR�WKH
,QIUDVWUXFWXUH
In order to build large-scale n-tiered enterprise applications with
acceptable performance application developers have to extend the
existing infrastructure with features like caching and bulk transfer
of object state. Building these extensions without flawing the
design is highly complex and may involve some or all of the
following aspects (selection):

• Synchronization of cached values,

• management of identity and references of cached business
data objects (mechanisms provided by Java serialization or
CORBA value types are not sufficient for this purpose),

• garbage collection and cache replacement strategies,

• transactional access to cached data,

• locking strategies,

• session management,

• development of new tools, e.g. code generators,

• and integration with existing infrastructure, tools, and
applications.

6

Obviously, this goes far beyond the scope of application
development and the skills of many developers who expect their
existing infrastructure to cover these features. Please note that this
problem is not limited to n-tier structures, but can occur in many
demanding, conventional three-tier applications, too.

Often the result is that application developers spend most of their
time with complex infrastructure aspects instead of concentrating
on the application’s business logic. They extend the existing
infrastructure with proprietary, highly application-specific, and
limited features which leads to systems that, although built on
standardized object-oriented middleware and component models,
are difficult to understand and hard to maintain.

��� $�)5$0(:25.�)25�1�7,(5('
(17(535,6(�$33/,&$7,216
To overcome the problems discussed in the previous section a
novel approach for enterprise application frameworks is needed.
Currently, we are designing and implementing a prototype
framework that provides explicit and efficient support for well-
structured, object-oriented, n-tiered enterprise applications. In this
section we describe basic ideas and concepts our framework is
based on. Please note that this is work in progress. As many
technical details are likely to be subject to changes at this early
stage we focus on high-level, architectural aspects in this section.
The goal is to give the reader an impression of our particular
solution.

���� &RSLHV�RI�%XVLQHVV�'DWD�2EMHFWV
Instead of accessing business data objects remotely they are
copied across process and machine boundaries so that application
code always works on local FRSLHV. More precisely, a business
data object is an abstraction that consists of a persistent state
stored in a transactional data store, zero or more copies, and
interfaces through which application code can access a copy.

���� 2EMHFW�0DQDJHUV�IRU�0DQDJLQJ�&RSLHV
Copies live within and are managed by REMHFW� PDQDJHUV. An
object manager manages object identity, life cycle, and
relationships between business data objects. Furthermore, an
object manager lets application threads perform queries, set
transaction boundaries, and it provides application threads with a
transactional view on business data objects. Object managers
maintain a cache for copies and are responsible for passing and
synchronizing copies across process boundaries.

���� '$*�RI�*HQHULF�2EMHFW�0DQDJHUV
Each application process of the n-tiered enterprise application has
an object manager that manages local copies for that process. An
object manager loads copies from, stores them to, and
synchronizes them with object managers of the underlying tier.
Each communication relationship between two application
processes implies a communication relationship of their object
managers, too. Like their application processes object managers
can be viewed as nodes of a directed acyclic graph (DAG) with
edges that represent client-server communication relationships.

An object manager is a generic component that can run on any
node of the DAG, it is not specific for a particular tier or
application. Object managers can use any combination of other
object managers and transactional datastores (e.g., relational

databases) in the underlying tier as data sources. Typically,
transactional datastores will reside in the last tier and serve as data
sources for object managers in the second last tier, although this is
not a requirement.

Figure 6 illustrates a simple n-tier structure with generic object
managers.

���� 7UDQVDFWLRQV
In simple cases a transaction involves all nodes on a path from a
client to a transactional data store. For example, a thread in a
client process starts a new transaction and queries data. The local
object manager forwards the query to an underlying object
manager (unless the data requested is already available locally)
which forwards it again, and so on, until, finally, an object
manager can execute the query on an underlying database. The
result is transformed into a set of copies and sent back to the
client, traversing all object managers on the path the query took in
reverse order. The client thread performs read and write
operations on business data objects through local copies and
finally requests to commit the transaction. The object managers on
the path to the database propagate all changes down until, finally,
the last object manager on the path writes new values to the
database. A possible client-side implementation of that scenario
(Java) might look as follows:

)LJXUH����([DPSOH�RI�D�Q�WLHU�VWUXFWXUH�ZLWK�JHQHULF�REMHFW
PDQDJHUV��(DFK�DSSOLFDWLRQ�SURFHVV�FRQWDLQV�DSSOLFDWLRQ

FRGH�DQG�DQ�REMHFW�PDQDJHU��20��WKDW�PDQDJHV�ORFDO�FRSLHV�

OM
Appli-
cation
Code

OMClient

Appli-
cation
Code

OMClient

Appli-
cation
Code

OMAppli-
cation
Code Database

Database Database

7

 myObjectManager.beginTx();
 List orderList = myObjectManager.query(TXHU\);
 Order order = (Order) orderList.get(0);
 Customer customer = order.getCustomer();
 if(customer.getName().equals(“Mr. X”)) {
 order.setDiscount(0.06);
 }
 myObjectManager.commitTx();

Transactions that access business data objects from more than one
data store are more complex. They involve nodes of a rooted DAG
instead of a simple path. Also, a two-phase commit is required in
that case.

For an effective and non-blocking concurrency control that allows
for caching of transactional data optimistic locking and versions
can be utilized.

���� ,QWHU�7LHU�$SSOLFDWLRQ�&RQWURO�)ORZ
Many applications will leave inter-tier communication completely
to their object managers. Processes between client object
managers and data stores are used as caches, for database access,
for concentration, or to integrate multiple data sources.
Application code in that processes is either not required or is
implicitly invoked as rules or triggers (e.g., for checking the
validity of a request).

But more demanding applications may require application-
specific remote invocations from one tier to a neighboring tier,
especially for invoking remote business process objects. To
guarantee a consistent, transactional view on business data objects
for threads in all tiers a transaction context has to be propagated
with such invocations. Contexts have to be sent in both ways, one
with the request message and another with the response message.
For instance, for CORBA remote operation calls
interceptors/service contexts can be used. A transaction context
consists of a transaction id and synchronization data. After a
request message arrived but before the remote operation is
executed the local object manager uses the synchronization data to
update and (optimistically) lock copies according to the caller’s
current transaction state. Then the remote operation is executed
within the given transaction, a response message with a
transaction context is sent back to the calling thread,
synchronization takes place again, and, finally, the calling thread
is allowed to proceed.

An alternative is to propagate transaction ids only and allow
object managers to exchange synchronization data on demand
with separate messages.

���� 'LVFXVVLRQ
There are some parallels between our object managers/copies
approach and EJB containers/entity beans as well as CCM
containers/entity components. But there are also important
differences – namely that we use copies instead of remote objects
and that our architecture is based on a DAG of generic object
managers.

With our approach all of the problems discussed in Section 5 can
be solved or at least be handled much more convenient:

• Corrupted n-tier structures (5.1) are avoided as tiers
communicate with neighboring tiers only. There is no need
to bypass tiers anymore because business data objects are

accessed through local copies obtained from object managers
of the underlying tier.

• Fine-grained inter-process communication (5.2) is reduced
significantly because copies are cached local to the accessing
code and states of multiple objects are transmitted within a
single message.

• Application design (5.3) is relieved of performance aspects.
Application developers can return to clear, simple, intuitive,
object-oriented designs as the framework transparently
handles synchronization and performance optimizations.
Known optimization techniques for object-oriented databases
and object-relational mapping tools [2], like caching, bulk
transfer of object state, prefetching, and lazy loading of
collections and attribute values, can be extended to n tiers
and be utilized as part of the framework. This does not
guarantee best performance in all cases, but we believe that
in most cases sufficient performance can be achieved.
Application developers can focus on a clear design and, if
necessary, on a small number of performance “hot spots”.

• There is no need any more to duplicate parts of the object
model or deny business logic direct access to it (5.4). All
tiers have direct and unlimited access to the object model in a
uniform way.

• Performance optimizations are implemented as part of the
framework and are not application-specific. Thus, application
developers can concentrate on their application’s business
logic instead of creating complex, proprietary, and costly
extensions to the infrastructure (5.5).

Our framework does not replace object-oriented middleware
which is still needed for application-specific inter-tier
communication and possibly communication between object
managers.

Direct and uniform access to the object model from all tiers is a
powerful feature as code that accesses business data objects is
independent of a particular tier. For example, a copy may
implement a method calcTotalPrice of a business data
object Order. The total price of an order is calculated by adding
the current prices of its associated business data objects of type
OrderItem. The implementation can be invoked and executed
in any tier. It is up to the application developer to decide where it
is invoked: When all order items are likely to be in the client
cache it makes sense to execute calcTotalPrice on the
client. But when an order typically has a large number of order
items that are not likely to be in a cache it is much more efficient
to execute the method in a process near to the database that stores
order items. This example shows that application developers still
have to deal with performance aspects in some cases, but at a
much higher and more appropriate level of abstraction.

��� 6800$5<
We define Q�WLHU� VWUXFWXUHV as multi-layer structures with a
layering criterion that is dominated by a process layering style.
The number of tiers can be freely chosen and, if necessary, easily
be adapted. We motivated that n-tier structures are well suited for
large-scale enterprise applications because they provide a
scalable, modular, and flexible design with a good separation of
concerns.

8

Unfortunately, state-of-the-art object-oriented middleware and
component models do not support enterprise applications with an
arbitrary number of tiers. The two basic problems are that
business data objects are represented as remote objects in the
second last tier and that the infrastructure does not support
efficient access to them from other tiers. This leads to severe
architectural and performance problems that force developers to
strictly limit the number of tiers and build costly, complex, and
proprietary extensions to the existing infrastructure. The problems
we identified effectively prevent the construction of well-
structured n-tiered enterprise applications on top of object-
oriented middleware and component models.

We are designing and implementing a prototype framework that
provides explicit and efficient support for well-structured, object-
oriented, n-tiered enterprise applications. The main differences
between our framework and existing object-oriented middleware
and component models are that we use copies instead of remote
objects for business data objects and that our architecture is based
on a DAG of generic object managers.

Future work includes refinement and enhancement of our
framework, performance optimization, efficient synchronization,
case studies with n-tiered applications, and a performance
analysis.

��� 5()(5(1&(6
[1] Bass, L., Clements, P., and Kazman, K. Software

Architecture in Practice. Addison-Wesley, 1998.

[2] Bernstein, P.A., Pal, S., and Shutt, D. Context-based prefetch
- an optimization for implementing objects on relations.
VLDB Journal 9 (3), 177-189, 2000.

[3] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
Stal, M��Pattern Oriented Software Architecture - A System
of Patterns� Wiley and Sons, 1996.

[4] Gamma, E., Helm, R., Johnson, R., and Vlissides, J��Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[5] Object Management Group. The Common Object Request
Broker: Architecture and Specification. Rev. 2.5, Sep. 2001.
http://www.omg.org

[6] Object Management Group. CORBA Components. Joint
Revised Submission. OMG TC document orbos/99-07-01,
Aug. 1999. http://www.omg.org

[7] Shaw, M., and Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall, 1996.

[8] Sun Microsystems. Java Remote Method Invocation.
http://java.sun.com/products/jdk/rmi/

[9] Sun Microsystems. Enterprise JavaBeans Specification,
Version 2.0. Final Release, Aug. 2001.
http://java.sun.com/products/ejb/2.0.html

[10] Waldo, J., Wyant, G., Wollrath, A., Kendall, S. A Note on
Distributed Computing. Sun Microsystems. Technical Report
94-29, Nov. 1994.
http://www.sun.com/research/techrep/1994/abstract-29.html

